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The Griffiths singularities are fully exhibited for a class of diluted ferromagnetic 
Ising models defined on the Cayley tree (Bethe lattice). For the deterministic 
model the Lee-Yang circle theorem is explicitly proven for the magnetization at 
the origin and it is shown that, in the thermodynamic limit, the Lee Yang 
singularities become dense in the entire unit circle for the whole ferromagnetic 
phase. Smoothness (infinite differentiability) of the quenched magnetization m at 
the origin with respect to the external magnetic field is also proven for con- 
venient choices of temperature and disorder. From our analysis we also con- 
clude that the existence of metastable states is impossible for the random models 
under consideration. 

KEY WORDS:  Lee-Yang singularities; Griffiths' singularities; infinite dif- 
ferentiability; metastable states. 

1. I N T R O D U C T I O N  

For systems with quenched impurities the equilibrium properties depend 
not only on the usual parameters (temperature, magnetic field, etc.) but 
also on the impurity distribution. The presence of randomness may affect 
their critical behavior by rounding first order transitions lAW] and may 
also produce singularities of unconventional type: a whole region of the 
phase diagram corresponding to a pure phase may be populated by "weak" 
singularities (see e.g. ref. I-F]). 
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232 Barata and Marchett i  

Griffiths [ G ]  was the first to realize and actually prove such 
phenomenon. He considered a random Ising ferromagnet in 7/a described 
by the Hamiltonian 

< x y )  x 

(1.1) 

where a:7/d~x~--~a~6{1,--1} is a configuration of spins which are 
coupled by a nearest neighbor interaction of the form 

Jxy = ~x~y (1.2) 

with ~ = {~x, x e Z d} being independent and equally distributed Bernoulli 
random variables 

1, with probability p (1.3) 
(x = O, with probability 1 - p 

Griffiths has shown [G]  that the free energy for this model cannot be 
analytically continued from H >  0 to H < 0 for all temperatures below the 
critical temperature Tc(p = 1 ) of the deterministic model and all p < Pc, the 
threshold of site percolation. This result has been extended beyond Pc, 
independently, by Siit6 [S] and Fr6hlich [F] .  As a consequence, Silt6 
claimed that a metastable phase cannot take place in diluted Ising models. 

Although the presence of Griffiths' singularities is now recognized to 
be a common feature of disordered systems (see ref. [F ]  and references 
therein), few progress has been made since Griffiths' original work. The 
emergence of Griffiths' singularities may be explained as follows. The fact 
that there occurs, with positive probability, arbitrarily large regions inside 
which the system is strongly correlated, leads the Lee-Yang's zeros [LY] 
to become dense over the unit circle in the complex plane. It is this very 
last statement that prevents the free energy to be continued analytically 
and which turns out to be hard to verify even in the most simple examples. 

The aim of this article is to exhibit in all possible details the Griffiths' 
singularities in a caricature model for the system (1.1)-(1.3). We consider 
a class of bond diluted Ising models given by the Hamiltonian (1.1) defined 
on the Bethe lattice whose disorder is introduced as follows. 

Let ~ be an homogeneous rooted Cayley tree (Bethe lattice) of order 
k, i.e., a tree with k + 1 bonds attached to each site which is not the root 
(called origin). 

A bond b is classified according to its distance from the origin. Thus, 
b belongs to the generation M (or to the equivalent class indeXed by M) 



Griffiths' Singularities in Diluted Ising Model 233 

if a directed path starting from the origin pass exactly by M - 1  bonds 
before it reaches b. 

To each generation M a Bernoulli random variable CM 

~M = { 1, with probability PM (1.4) 
0, with probability q M = 1 -- P M 

is assigned and we then set Jxy = CM if ( x y )  = b is a bond at the generation 
M and 0 otherwise. See Fig. 1. 

For any event A, which is an element of the a-algebra generated by 
the space of spin configurations, we define the quenched expected value of 
A as 

A =  F[A] = Er162 (1.5) 

where ~:~ is the expectation with respect to the disorder variables and 

1 
(A) (~)  = Z ~  ~ A ( a ) e  PJe~(~ (1.6) 

is the thermal average with 

Z(~) = ~ e -B~(~; r 
~r  

being the partition function. 

? 
z 

Fig. 1. The homogeneous rooted Cayley tree for k = 2 and the couplings #M; 
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The expectation (1.5) is a function of the inverse temperature fl, the 
external magnetic field H and the sequence of Bernoulli parameters  
P =  {Pj}~-I.  Let n =  {p: 0< p j ~ <  1, j =  1, 2,...} and notice that I~sps~< 1. 
For  0~<a~< 1, let na = { p ~ n :  l im ,~  ~ Pl'" .p,,=a}. Also, for convenience, 
we write ( =  e 2~ and z = e-2~/J. 

We shall first take the expectation in a finite tree c#k. M, M =  1, 2 ..... 
with free boundary conditions and study the function .4: [0, 1 ] • C • ~ 
-4((, z, p )~  C in the limit as M goes to infinite. We recall that .4 is not 
translation invariant, even at the thermodynamic limit. 

As in ref. I-G], instead of analyzing the free energy, we shall be concer- 
ned with the magnetization at origin m := E[a0] = Er  which can be 
written as 

m = F + I  (1.7) 

with F := limN ~ ~ FN, where 

N - - I  

FN:= ~" aM(ao)M(1) (1.8) 
M = 0  

gives the contribution to m due to finite clusters and I := limN~ 0 0  1 N, 
where 

IN:=p~' ' 'p . (aO)N(1)  (1.9) 

is the contribution of the (unique) infinite cluster. Here, for any observable 
A, ( A ) M  is the thermal average (1.6) with (Ok replaced by the finite tree 
cgk. M and aM, M ~ ~, is given by 

ao := 1 - - P l ,  

aN:=Pl "''PN( 1 --PN+I), N>~ 1 

Equation (1.7) is a consequence of the fact that ( a o )  (~) = ( a o )  M ( 1 ) 
for all ~ such that ~ . . . . .  ~M = 1 and ~M+ 1 = 0. In addition, since 

N - - I  

~_~ a,, + Pl "''PN =1 
n = 0  

for any N ~  ~,  we note that  Zn~__o a ,  = 1 -- a for all p ~ ~a. Clearly, {an} ,~o 
is a summable sequence. 

There are two different manners of m fail to be analytic in z depending 
on the behavior of F and L When ( > (c, with (c being the critical point of 
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the deterministic model, both F and I are analytic in a neighborhood 
of R +. F is responsible for the Griffiths' singularities for all ( < (c and p �9 rc 
while I develops a discontinuity at z = 1 for ( < (c and p �9 ~z a with a > 0 (see 
Theorem 1.6 for precise statements). 

By assigning a single random variable to bonds at the same genera- 
tion, only thermal expectations of "perfect" finite trees have to be com- 
puted in the quenched magnetization (1.7). This simplified form of m, 
which is analogous to that introduced by McCoy and Wu [ M W ]  for the 
random Ising model in 7/2 (see also ref. [F i ]  for a one dimensional model 
related to ours), has to be compared with similar equation for the model 
defined by Eqs. (1.1)-(1.3): 

m =~ Pomo (1.10) 
q, 

Here, m e is the magnetization density in the cluster ~ (a finite connected 
piece of 7/d) and P~, the probability that an isolated cluster ~9 contains the 
origin. The sum in (1.10) contains the contributions of finite and infinite 
clusters. The sum over finite clusters runs over c" different clusters ~ con- 
nected to the origin and with size [~9 t = n, n �9 N, whereas only one cluster 
with size (k  M + I -  1 ) / ( k - 1 )  for each generation M of the Cayley tree % 
contributes to (1.7). Also, only one infinite cluster appears in the class of 
models we considered. 

On a general ground the Griffiths singularities emerge from the con- 
tribution of the finite clusters to m, provided there exists an infinite collec- 
tion C of finite clusters such that the union U(C) of all Lee-Yang zeros of 
all clusters in C has z- -  1 as an accumulation point. For  the absence of 
metastability U(C)= S 1 should be required. To fully exhibit the presence 
of Griffiths singularities or the absence of metastability in random 
ferromagnetic models the validity of such requirements on U(C) has to be 
proven explicitly. For  this, the relation between n �9 N and the number of 
clusters of size n connected to the origin is of lesser importance and, hence, 
the class of models we considered is likely to share some important proper- 
ties of more complicated systems. 

In this paper we will prove the following two theorems, which 
illustrate explicitly Lee-Yang and Griffiths theorems for the particular 
model introduced above. In order to simplify the presentation of the results 
of this work, our analysis will be restricted to the Cayley tree cg k with k = 2. 

T h e o r e m  1.1 (Analyticity). The magnetization at origin, 
m=m((, z, p), given by (1.7) is an analytic function of z in the domain 
{zeC, l z l<l}w{zeC,  lzl>l} f o r a l l ( e [ 0 , 1 ]  a n d p e ~ .  I 

822/88/1-2-17 
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Griffiths [ G]  has argued that the Lee-Yang singularities, in the ther- 
modynamic limit, accumulate at z = 1 for all T <  Tc (see also ref. [KG]) .  
The next theorem shows that the singularities in our model are dense over 
the arc AK := {z =e/~ K<~ 101 ~<rc} in the unit circle for some K =  K(~) and 
do accumulate at z = 1 for all ~ ~< (,. = 1/3. More precisely, 

Theorem 1.2 (Distribution of Singularities). Let ~ e [ 0 , 1 ]  and 
p e re such that a ,  r 0 for infinitely many values of n. Then, the magnetiza- 
tion at origin, m=m((, z, p), cannot be analytically continued from 
{]zl < 1} to {[z[ > 1} (or vice-versa) along the arc of circle A K where 
K =  K(() is given by 

{30 arc os 
~ / 3 ( 3  - ( ) ( 3 ~ - -  1) if ( c < ~ < ~ l  K(() := - 4 arctan \ ~ - - ~  

if (~<(c 

with (l e ( 1/3, 1 ), (1 -~ 0.46409. 
In addition, for all ( > ~, and p e z~, m is an analytic function of z for 

all z e C\A~, where K = K(() is given by 

( ~ s i n ~ ) _ ~  (1.11) 
~c := 4 arctan 1 + ( cos 

with cos ~ := 1 / (2 ( ) -  3(. | 

R e m a r k  1.3. The proof of Theorem 1.2 is based on a detailed 
description of the singularities of (o-0)M(1) which are located, by 
Theorem 1.1, in the unit circle. These are isolated poles which accumulate 
in the arc A K. The measure properties of this set will not be described 
in this work (for this and some of our results in a similar model see 
ref. [ BG-R]- [  Mo ] ). Our estimates can be easily adapted to provide better 
values for K and (t. We believe that (l can be pushed up to 1. Note that 
A~\AK~;25 for all ( c < ( < ~ l  with lim:.~:K(()=lim~..~cK(~)=O (see 
Fig. 2). 

R e m a r k  1.4. Due to the dilution, free boundary conditions were 
imposed. It is interesting to note that the circle theorem is no longer valid 
for boundary conditions corresponding to a different magnetic field (even- 
tually infinite) acting on the spins at the boundary. 

Remark 1.5. As discussed by Silt6, Theorem l.2 immediately 
implies absence of metastability for our diluted model. We recall that our 
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K 

< I/3 ~ > I/3 

Fig. 2. The limit set of singularities (bold arcs) in two regimes. 

models distinguish the contribution of the finite clusters from the contribu- 
tion of the infinite cluster. When p = 1 the system reduces to the deter- 
ministic Ising ferromagnet on the Cayley tree which exhibits metastability 
as in the mean field theory. 

Recently, Dreifus, Klein and Perez [ D K P ]  have established infinite 
differentiability of the quenched magnetization for general disordered spin 
systems using a modified high temperature expansion which converges in 
the presence of Griffiths' singularities. We here are able to study the right 
and left derivatives of m at z = 1 when spontaneous magnetization occurs 
and the high temperature expansion does not converge. In view of 
Theorems 1.1 and 1.2 it suffices to examine only the neighborhood of z = 1 
in z~  ~+ when ( < ( , .  

T h e o r e m  1.6 (Continuity and Differentiability). For  any 0 ~< ( <  (c, 
z e ~ + and p e re0, the quenched magnetization m given by (1.7) is always 
a continuous function of z with r e ( l ) =  0. Moreover, F is at least k-times 
differentiable at z =  1 for 0 < ( < ( c  and p eT~, provided the sequence 

aj2k/} ~= o with 

1 - (  
2 =  2 ( ( ) : = 2 - -  

1 + (  

Is summable, i.e., 

I : F  
k~ " dz k <~ CD k ~ 2kJaj (1.12) 

j = 0  

for some finite constants C = C(() and D = D((). 
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In addition, for all p e ha, with a > O, m is a discontinuous function of 
z a t z = l  with 

lim [m(1 - e ) - m ( 1  + e ) ]  = 2 a  (1 - 3()1/2(1 + ()1/2 
~ o  1 - (  

| (1.13) 

Remark  1.7. For  z ~ N + ,  zv~l ,  (1.12) holds with 2 k replaced by 
/ t = p ( ( ,  z), uniformly in k (see Theorem 6.7). This, in particular, implies 
that m(z) has a convergent power series, in agreement with Theorem 1.1. 

Remark  1.8. The summabili ty condition on {aj2Jk}~=o can be 
fulfilled in two different regimes: 

1. When l i m z ~ l m ( z ) = 0 ,  the Bernoulli parameters  p~n0 ,  can be 
chosen such that  

• N !  ~ lnpj>kln2+p 
j = l  

holds for all N >  No, for some No = No(k, 2) < oo and p > 0. Notice that, if 
pj ~ e f with e > 0, the magnetization m is infinitely differentiable. 

2. For  p e ha, with a > 0, the function I must  be considered. One can 
show, by applying the implicit function theorem to Eq. (3.18), that  I(z) can 
be analytically continued from z < 1 to z > 1 (and vice-versa). F rom this 
and Theorem 1.6, if Pj+I > 1 - ( 6 2 - k )  J, with fi < 1, then 2Jkaj < 6 J and the 

jl+c 
right and left derivatives of m at z = 1 exist up to order k. If  pj ~ 1 - e , 
with e > 0, the right and left derivatives of all orders exist. 

Lee-Yang circle theorem (Theorem l.1) is proven in Section3, 
Griffiths theorem (Theorem 1.2) in Sections 4 and 5 and Theorem 1.6 will 
be proven in Section 6. 

2. S O M E  B A S I C  R E S U L T S  A N D  D E F I N I T I O N S  

In this section we present some basic mathematical  facts which we will 
use in the proofs of our main results. Some useful definitions are also intro- 
duced. 

For  z s C consider the map  r~: C ~ C given by C ~ u --* zz(u) with 

rz(U) : =  h(zu) 
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where, for w e C, 

( ~" "{- W ~ 2 
h(w) := \ ] ~ ;  (2.1) 

with 0 ~< ( ~< 1. 
Let us denote by V(z n) the nth composit ion of Zz with itself, for n e N: 

r~ n) := % o . . . .  Vz (2.2) 

with r~~ u, u e C. Very often we will be interested in the following 
functions of  z: 

w,(z) := zr~n)(1) (2.3) 

with n e N. 
Let us start with some elementary remarks concerning the function h. 

First, note that h has a unique double pole at w = -1 /~ .  Moreover,  h(w) 
is bounded on C\(9, where (9 is any open set containing the pole and has 
a removable singularity at the complex infinity. Therefore it could actually 
be considered as a map  of the Riemann sphere S 2 into itself. As such a map  
h is holomorphic in $2\{ - l / l } .  Moreover,  in S 2 one has h ( ~ ) =  h(w) and 

h(w- ' )  = h ( w ) - '  (2.4) 

Both relations together imply that  h maps the unit circle S ~ := {we $2: 
I wl = 1 } into itself, since for w e S 1, h(w) = h(w) - 1. 

Let us denote by D< 1 the open unit disk in S 2 and by D> t the com- 
plement of  its closure. More generally, for a > 0 call 

D<a:={weS2: Iwl <a} and D>a:={weS2: Iw[ > a }  

The following theorem is very important  for this work. 

T h e o r e m  2.1. For  the whole interval 0 ~ < 1 ,  the function h 
maps D < ~ into itself and D > 1 into itself. | 

Proof. By (2.4) it is enough to prove the claim for D < 1. For  0 ~ ff < 1 
the function h is analytic in D<l .  If  we S l, the boundary  of D<~, we have 
seen that Ih(w)l = 1. Therefore, since h is not constant in D<~, we conclude 
by the Maximum Modulus Theorem (see e.g., ref. [ T ] )  that Ih(w)l < 1 for 
all w e D  <l. | 
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One can also trivially see that h maps R+ into itself. So, we have also 
established the following picture, which will play a central role in our 
discussions: 

Corollary 2.2. As a function of z, w,,(z) maps each of the sets 
D < 1, S ~ and D > 1 into itself for all n ~ N and all ( ~ [ 0, 1 ). Moreover, each 
of the sets [0, 1) and (1, oo)~ ~+ is also mapped into itself. Finally, 
w , ( 1 ) = l ,  f o r a l l n ~ N .  | 

We will also make use of the following observation. The function h is 
the ratio of two polynomials in z of degree 2 and, hence, z)")(1) can be 
written as the ratio of two polynomials of degree 2 " + ~ - 2 :  

~-) - ( 2 . s )  v z (1) P . ( z )  
Q~(s) 

where P,(z) and Qn(z) are polynomials in z of degree 2" + l _  2. 

3. A N A L Y T I C I T Y  O F  m 

This section is devoted to the proof of the analyticity of the quenched 
magnetization at the origin, as described in Theorem 1.1. We start by com- 
puting the partition function ZM(() in a finite tree with M generations and 

= 1 (deterministic case). 
Let Z j =  ( Z / ,  Z / ) ,  j = 0 ,  1 ..... M, be a sequence of two-component 

vectors defined recursively by 

Z]  1 : = (  ~+ e/~"'eah"'zT') z 
o - '  _ 1 

= ((z) ~ ( (~ l - , ) /2Zf  + (u +,)/2zZ j )2 (3.1) 

with Z~t = Z M = 1. 
If the spin configurations are summed starting from the branches 

towards the root, the partition function ZM(~) at ~ -  1 can be written as 

Z~(1)  = z '/2Z? + z m Z o  (3.2) 

To compute the one point-function 

1 
(a0)M(~)--ZM(~) ~ tr~ ~/J(";r (3.3) 

f f  
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we repeat the calculation leading to (3.2) for the numerator in (3.3). Except 
by the last summation on the spin at the root, all remaining ones give 
exactly the same expressions. We thus have 

Z - - l / 2 Z ~ -  - -  z 1 / 2 Z o  _ 1 - -  zAo 
(ao)M(1)  = z  l/2Z~ - - } - 2 1 / 2 Z  0 - -  1 +zAo (3.4) 

where Aj = Z f / Z f .  
From (3.1), the 

relation: 

/ I  M sequence { j}j=0 satisfies the following recurrence 

Aj 1= Zz(Aj), j = l  ..... M (3.5) 

with AM = 1. We have thus proven the following proposition. 

Proposition 3.1. The one point function (a0)M(1),  defined on a 
finite tree cg2, M with no disorder (~ = 1), can be written as 

1 --WM(Z) 
( ao) M(1) -- -- r(W M(Z) ) (3.6) 

1 + WM(Z) 

where 

1--X 
r(x) := (3.7) 

l + x  

for x e C ,  x ~ - l .  | 

We will present the proof of Theorem 1.1 in the next two subsections. 
The first is dedicated to the proof of analyticity of F and the second to the 
proof of analyticity of L 

3.1. Analyticity of F in Sa \S  1 

Using (3.6) we can write (1.8) as 

N 1 

FN(Z) := ~ anr(w,(z)) (3.8) 
n = 0  

Consider now any open set ~ such that ~ c D< 1- One has 

inf I w , ( z ) + l l > l - s u p { l w l ,  w ~ } = : C  1>0  (3.9) 
z~f l~  
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since, by Corollary 2.2, wn(z)c D <l for all z c ~ and all n ~ ~. Moreover, 
under the same hypotheses 11-  w,(z)l ~< 2. Therefore, using the fact that 
{a~} ,~--o is a summable sequence, we have 

M--1 
IFM(z)--FN(Z)I <~2C ~ [a~] <e  (3.10) 

n=N 

for any prescribed e > 0, by choosing M >  N, and N large enough. Hence, 
FN(S) is a uniform Cauchy sequence of analytic functions in ~ and, conse- 
quently, its limit exists and is analytic in ~.  

Since ~ is generic, this shows that F(z) is analytic in the whole set 
D<, .  To prove that F(z) is also analytic in D>l we observe that, by (2.4), 
one has 

Wn(Z ) = (Wn( z --1)) --1 (3.11 ) 

and, hence, FN(Z) = -- FN(1/Z), N c t~. 

3.2. Analyt ici ty of I in $ 2 \ S  1 

Let us consider the closed set D 1 : = D < l k A S I ~ C  and the map 
~'z: D1 I"-~D1, for z E D < I  fixed. 

Proposition 3.2. The map Zz is contractive on D~ for 0-..<(-~<1 
and [z[ < p  ((), where p_(( ) :  [0, 1] ~ [0, 1] is given in (3.16). Therefore, 
by the Banach fixed point theorem, the sequences {Z~n)(W)}n~n, with 
w ~ D1, converge to z e D 1 which is the unique solution in D1 of the fixed- 
point equation 

z = Zz(Z) = h(zz) (3.12) 

Moreover, for Izl ~ p o < p - ( ( ) a n d  Iwl, Ivl ~<1 one has 

[h(zw) - h(zv)[ <<. qQ [w - vl (3.13) 

with qo := 2(1 - (2) Po/(1 - (po) 2 < 1. | 

Proof. We want to analyze ]vz (w)-v~(v) l=lh(zw)-h(zv)[  for 
w, rED1. A computation shows that h(zw) -h ( zv )  = Q(z, w, v ) ( w - v ) ,  
where 

I ( + z w  ( + z v  q z(1 _(2)  (3.14) 
O(z, w, z ) := 1 + ( z w +  l-+---f-~J (1 +(zw)(1 +(zv)  
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We prove that z~ 
that IQ(z, w, v)[ < q  for some constant q with 0~<q< 1. 

Since I(C+zw)/(l +~zw)l ~< 1 for Izl, [wl ~< 1 one has 

is contractive provided we find conditions which guarantee 

Izl 
(1 -W Izl) 2 

IQ(z, w, v)l ~<2(1 _~2) 

One has [Q(z, w, v)] < 1 provided 

_~2 iz l2+2 Izl ( 1 + { - ~ 2 ) -  1 = - { 2 ( ] z l - p _ ( ~ ) ) ( I z l - p + ( ~ ) )  < 0  

where 

(3 .15)  

1 + ~ -  ~:_+,/(1 + 2 ~ -  ~:)(1 _if2) 
p+(~) := Ca (3.16) 

Note that 1 + 2 ~ - f f  ~ >~0 for ~e [0, 1]. 
Next we show that p+(~ )>  1 and p _ ( ~ ) <  1, for ff �9 (0, 1). These con- 

ditions are equivalent to the condition 

(1 + ~ - 2 f f 2 ) 2 - ( 1  + 2 ~ - ~ z ) ( 1 - ~ 2 ) < 0  (3.17) 

but the left hand side equals - ~ 2 ( 1 - ~ ) ( 1 + 3 ~ )  which is manifestly 
negative for 0 < ff < 1. 

We have established that, under the hypotheses, IZz(W)-rz(V)l < 
q I w - v l for some fixed q with 0 < q < 1 what means that Vz is contractive. 

Since the right hand side of (3.15) is an increasing function of Izl for 
0~<IzI<1/~, we have [ Q ( z , w , v ) t ~ q o < l  for O<~[zf<po< p (~). This 
completes the proof of the proposition. | 

R e m a r k  3.3. One has to show that p_(~) > 0, what means that the 
region of validity for z of the last proposition is in fact non-empty. Since 
l + ~ - f f e ~ > 0  for f f � 9  it is enough to show that ( l + f f - f f e )  2 -  
(1 + 2f f -  ff2)(1- ~2)>/0. But the left-hand side equals ~2 and so, positivity 
of p _(~) is proven. Actually, one finds numerically that p_(ff )> P0 ~ 0.41 
for all ~ � 9  Finally we notice that l imr ( f f )= l /2  and that 
p (1)=  1. This last fact means that the region {zEC:  Izl <p_(~)} con- 
verges to D<l when ~-+ 1. 

We are now in position to establish the following important result: 

T h e o r e m  3.4. The sequence w,(z), n �9 N, of analytic functions on 
D<I converges uniformly to an analytic function w = w(z) on the whole 
set D< 1. | 



244 Barata and Marchett i  

Proof The sequence (n) r z ( 1 ), n ~ ~,  is a sequence of analytic functions 
of z e D <, which is uniformly bounded in this domain, since (") I% (1)1 < 1. 
Proposit ion 3.2 says that this sequence converges on the open subset 
Dp C D < l .  Now, according to Vitali's Convergence Theorem (see, e.g., 
ref. [T ] ) ,  these facts guarantee that the sequence converges uniformly on 
the whole D< ,  to a function r(z), analytic on D <,. Since w~(z)= zr~")(1), 
the sequence of analytic functions w,(z) converges uniformly to 
w(z)=z~(z). I 

T h e o r e m  3.5. For  all ~ ~ (0, 1 ] the function v = v(z) fulfils the fixed 
point equation r = h(zr) on the whole set D < , .  As a consequence, v(z) has 
no zeros o n O < , .  I 

Proof The function G(z) := ~ ( z ) - h ( z r ( z ) )  is analytic on D < , .  After 
Proposit ion 3.2, r = r(z) fulfills the fixed point equation r = h(zv) o n  Dp . 
Hence G(z)= 0 o n  Op_ and, consequently, G(z) is identically zero on the 
whole set D <,. Since h(0) # 0, r(z) cannot  have a zero in D < 1. | 

R e m a r k  3.6. The fixed point equation above is equivalent to the 
third degree equation (written in terms of w(z)), 

w(1 + ~w) 2 - z(~ + w) 2 = 0 (3.18) 

Solving this equation and identifying the adequate roots would furnish the 
explicit expression of w as a function of z E D < ,. Unfortunately this explicit 
form is too complicated to be useful. 

The bound [w(z)l < 1 holds on D<l .  Therefore, 

I < ( z ) : =  lim IN(Z)= lim p,...pNr(WN(Z))=ar(w(z)) (3.19) 
N ~  N ~  

is analytic on D < , .  Since IN(Z)=--IN(Z ,) for any N ~  ~ we conclude 
that, for z~D>l, we have I > ( z ) : = l i m N ~ I N ( Z ) = - - I < ( z  1) which is 
analytic on D >,. This completes the proof  of Theorem 1.1. | 

According to Theorem 1.1, the singularities of re(z), if they exist, must 
be localized in the unit circle S ~. In particular, FN(Z ) may have singularities 
at points z for which w~(z) + 1 = 0 for some 0 ~< n ~< N. As we will next see, 
these singularities exist indeed and are poles. We will call these singularities 
the Lee-Yang singularities of the magnetization at the origin re(z). 

4. THE L E E - Y A N G  S I N G U L A R I T I E S  OF m 

For  n ~ ~ we are interested in solutions of  the following equation 

w,(z) = - 1 (4.1) 
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Since wn(z), as a funct ion of  z, m a p s  bo th  sets D<~ and D > I  into itself, the 
solutions of  (4.1), if they exist, mus t  lie on S 1 := {z~ C; [z[ = 1}. To  show 
the existence of  solut ions we observe  tha t  (4.1) is equivalent  to the po lyno-  
mial  equa t ion  zP,,(z) + Q,(z) = 0 ,  which has  at least 1 and at mos t  2 n+l - 1 
distinct solutions in C. By the previous  a rgument  these solutions mus t  all 
lie in S ~ c C. We will establish be low tha t  the n u m b e r  of  distinct solut ions 
is precisely 2" + 1 _ 1. 

Let  us denote  by  ~ , c S  ~ the set of  all solut ions of  (4.1) for a given 
n E ~.  Since wn(z) =- wn(~) we conclude tha t  if z 0 e ~n then f0 ~ ~n  as well. 
Since wn( - 1) = - 1, it is also clear tha t  - 1 ~ ~n .  

Wri t ing z = e i~, 0 ~< ~b ~< 2n for the elements  of  S 1, let us enumera t e  the 
elements of  ~n in increasing order  according to the angle ~b. Define 

9~, :=  {~b(n, l )~  [0, re], 1 ~</~<2 ~} 

where z(n, l ) = e  ;~(",l~ satisfies w,(z(n, l ) ) = -  1. Since z = -  1 is a lways a 
solut ion of  this equa t ion  we have  ~b(n, 2") = re. In  words,  the set 9t~ is, for 
each given n, the set of  phases  of all L e e - Y a n g  singularities conta ined  in 
the uppe r  half  unit  circle counted  in increasing order,  i.e., ~b(n, l)~> ~b(n, l ' )  
for l > l'. 

In  the next  two subsect ions we will establish the following theorem:  

T h e o r e m  4.1 .  The  set 9~, becomes  a dense set on [0, re] when 
n ~ f o r r < < . ( < ~ l / 3 .  I 

To start  with the analysis,  let us look  in more  detail  at  the sequence 
w,(z), n ~ ~, for z ~  S ~. Firstly, consider  the funct ion h(w) for w e  S 1. Since 
l/w = ~ we can write 

h(w) = w= \ ~ /  

For  w =: e ~~ we have  h (w)=  : e ~r~~ with 

( ( s i n 0 )  (4.2) 
L(O) = L((, 0 ) ' =  2 0 -  4 a rc tan  ] + ( cos 0 

Hence,  defining ~b th rough  z =:  e ~ and  ~bj t h rough  wj(z) =: e~J, j ~  N, 
and taking into account  tha t  wj+ l(Z) = zh(wj(z)), we have  

r r 
(4.3) 

~b~+ 1 := ~b0 + L(~b~), i 6 ~  

These equat ions  will be t reated as a discrete dynamica l  system on R. 
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4.1. Properties of the Discrete Dynamical System 

Proposition 4.2. For all x ~  and ( ~ [ 0 ,  1) ,L is a continuous 
monotone increasing function of x such that L'(x)/> L'(0) - 2((), where 

1 - ~  
2(() := 2  ( ~ )  (4.4) 

Moreover, the function L has the following properties: 

(i) L ( x  + 2re) = 4re + L(x) ,  x ~ ~, 

(ii) L " ( x ) ~ O ,  for x e [ O ,  rc], 

t 
0, 0~<x<~t 

(iii) lim L ( x )  = 2zc, x = rc 

CTI L4rc, ~r < x  ~< 2zc I 

Proof.. By definition 

I~S~X + (2)~ )~(() (4.5) L ' (x )  = 2 (1 + 2( 

This relation says that L is a strictly positive, strictly increasing function in 
~+ \{0} .  We also have 

4((1 - (2) sin x 
L" (x )  = ( 1 + 2( cos x + (2)2 ~ 0 (4.6) 

for 0 ~< x < zc. Note that, for ( = 1 and 0 ~< x < re, L satisfies the differential 
equation L ' ( c ) = 0  with initial data L ( 0 ) = 0 .  This shows (iii) since 
L(n) = 2zc for any (. Item (i) is clear. | 

Corollary 4.3. F o r x ~ +  a n d ( ~ [ 0 ,  1] o n e h a s t h e  simple bound 
L(x) >>.,~(~) x. I 

In view of Proposition4.2 and since 2 ( ( ) >  1 for 0 ~ < ( <  1/3, the 
Liapunov exponent of the discrete dynamical system (4.3) is positive in this 
range of ~. We have also the following 

Lemma 4.4. If~b0E~+ then~biE~+ f o r a l l i E ~ , i ~ > 0 .  | 

Proof. Let us assume, by an induction argument, that ~b;~ ~+ .  By 
Corollary 4.3 one has 

~bi+ ,/> ~b o + 2(~) ~bi ~> 0 (4.7) 

by the hypothesis. Since this holds for all i ~ ~ the lemma is proven. I 
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From now on we will consider only starting points in E+,  what 
reduces the dynamical system to a dynamical system on R+. Let us denote 
by ~b~(~b) the ith iterated of the discrete dynamical system having ~b as 
starting point. 

L e m m a  4.5. Let ~2 and 4) ] two starting points with ~b2>~bl~>0. 
Denote ~b~ =~bi(~b'), with i t  ~ and a = 1, 2. Then for all i t  ~ one has 

II 

Proof.. Assume, by an induction argument, that ~b~. Then 

~b 2 
# + ,  , , L'(s) ds 

/> ( # -  r  + - > 0 (4.8) 

by the hypothesis. II 

Note that ~bi(~) is a continuous function of the starting point ~b, since 
it is a finite composition of continuous functions. This fact and the previous 
lemma immediately imply: 

L e m m a  4.6. For all i t  ~, ~i(~b) is a strictly increasing continuous 
function on ~ +. II 

This lemma has an important consequence: 

C o r o l l a r y  4.7. The sets 91~, n t ~, are composed by 2 n distinct 
elements, what in particular says that (4.1) has, for each n t r~, precisely 
2 n + 1 - 1  distinct solutions in S ]. Each set 9ln can be ordered such that 
0 ~< $(n, l ) <  ~b(n, l')~< re for l < l' and the elements $(n, l) are such that 

~b,(~b(n, l)) = rc + 2re(l-  1 ) (4.9) 

for 1 ~< l ~< 2 n. All these facts hold for all ( t  [0, 1 ). II 

Proof.. The sets ~Rn, n t N, defined above can also be characterized as 
the sets of all ~b(n, l) t [0, ~], 1 ~ 1~< 2 n, for which ~bn(~b(n, l)) = re + 2rmz 
for some n i t  ~, depending on l. To see that n~=l -1  we note that, 
due to Lemma4.6, ~bn(~b) is a strictly increasing continuous function 
of ~b with ~bn(0)=0 and ~b, (~)=(2n§ Therefore, ~bn: [0, g]  ~ [0, 
(2 n + ~ - 1 ) ~ ]  is an invertible map, the inverse being also strictly increasing 
and continuous. We can define ~b(n, l ) : =  ~bnl(~ + 2re(l--1)) for 1 ~< l~< 2". 
Clearly ~b(n, l) < ~b(n, l ') if l<l' .  
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4.2. The S e t s  ~n in the Ferromagnetic region (0 ~< ~ ~< 1/3) 

In this subsection we will show that, in the ferromagnetic region 
(0 ~<(~< 1/3), the Lee-Yang singularities become dense in the whole unit 
circle S 1 when the thermodynamic limit is taken. 

The next two theorems are crucial for understanding the behavior of 
the Lee-Yang singularities when n goes to infinity. 

Theorem 4.8. With the above definitions we have 

lim (~b(n, l +  1)-~b(n, 1 ) )=0  (4.10) 
n ~ o o  

uniformly in l, for all 0 ~< ~ ~< 1/3. | 

Proof Call ~b/(n, l ) : =  ~bi(~b(n, l)), the ith iteration started from the 
point ~b(n, l). We have for 0 ~< i ~< n -  1 

~i+l(n, l-t- 1) -- ~bi+l(n , l) 

= ~b(n, l +  1)-~b(n, l)+L(r l +  1 ) ) -  L(~b,(n, l)) 

>~ r l + 1 ) -- r l) + 2(~)(r l + 1 ) -- r l)) 

>/(  ~, 2(r (~b(n, / +  1)-~b(n,/))  (4.11) 
c t = O  

by Lemma 4.5, by (4.5) and by induction. Since ~bn(n, l +  1 ) -  ~bn(n, l) = 2~, 
we get 

~(n,l+l)-O(n,l)<<.2~ 2(~) a (4.12) 
a = 0  

uniformly in /. For 2(~)/> 1, what happens if 0 ~ ~<  1/3, the limit (4.10) 
follows. I 

We can also prove the following theorem: 

T h e o r e m  4.9. With the above definitions we have 

lim ~b(n, 1 ) = 0  (4.13) 
n ~ o o  

for a l l 0 ~ < l / 3 .  I 
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i~<n--1 we have 

l = ~b(n, l )  + L(~b,)/> ~b(n, 1) + 2(~) ~b, 

i 

Hence, taking i = n -  1, 
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(4.14) 

(4.15) 

/ n - - 1  \ - - 1  ~ 
from which the theorem follows. I 

Theorems 4.8 and 4.9, together with the fact that rc ~ 9t, for all n ~ N, 
imply Theorem 4.1. I 

R e m a r k  4.10. Notice that both Theorems 4.8 and 4.9 hold also at 
the critical point ~ = 1/3. 

4.3. The Sets ~ n  in the Paramagnet ic  Region (1/3 < ~ <  1) 

In Section 5 we will see that, for each value of ~ in the paramagnetic 
region ( 1/3 < ( ~< 1 ), the sets ~,, are excluded from a neighborhood of z = 1. 
However, one should expect that, in analogy to the situation in the 
ferromagnetic region, the sets ~ become dense in some proper subset of 
S ~ when the limit n ~ oe is taken. 

In this subsection we will prove a weaker statement, namely that there 
exists a proper subset A,. of S 1 such that ~n c~AK, becomes dense on A K 
when n ~ oe. Let us start capturing the main ingredients for the proof, as 
we learned from the last subsection. 

The proofs presented in the previous subsection show clearly that the 
phenomenon of the Lee-Yang singularities becoming dense is closely 
related to the positivity of the Liapunov exponents of our discrete dynami- 
cal system. In order to obtain analogous results for the region 1/3 < (~< 1 
one has to take into account that, for these values of (, the derivative L'(x) 
is not larger than 1 for all points x~  [0, 2re]. However, if the trajectory of 
the dynamical system visits frequently enough regions where L' is large, a 
positive lower bound for the Liapunov exponent can be obtained with few 
iterations. This can be the case if, for instance, the points of the trajectory 
successively jump from a region where L' < 1 to other where L' > 1, large 
enough. Below we will follow this sort of idea in order to advance into the 
paramagnetic region 1/3 < ( ~< 1. 



250 Barata and Marchett i  

Consider the sets ~R n for 1/3 <(~< 1. For our discrete dynamical 
system we have 

(gi+2=~o-FL(~o+L(Oi)), i>~ 1 (4.17) 

Define, for ~b e [0, re] and x e R+,  MGb, x) := L(fb + L(x)). Since 

Mx(~b, x) = L'(~ + L(x) ) L'(x) (4.18) 

one has Mx(~b, x + 2zc) = Mx(~b, x), x e R. 
Assume that, for some convenient set [x  ~ zc] c [0, ~r], 0 ~< tc~ ~r, one 

has 

M ~ := inf inf Mx(~, x) ~> 1 (4.19) 
~ e [K~ ~r] x E ~  

This basic assumption will be proven at the end of this subsection. Let us 
first draw some of its general consequences. For x~ and 
O<.x<y on has 

M(b, y) - M(a, x) = (M(b, y) - M(b, x)) + (M(b, x) - M(a, x)) 

b 

= I f  gx(b , s )  ds+fa M~(p,x)dl~ (4.20) 

But M~(t~, x) = L'(lz + L(x)) >~ 0 and so 

M ( b , y ) - M ( a , x ) > ~ i Y M x ( b , s ) d s > ~ M ~  (4.21) 

with M ~ given by (4.19). Under the assumption (4.19) and using (4.21) we 
have, as in (4.11), 

r 2(n, l +  1 ) -  r 2(n, l) 

= (r  l + 1 ) - r  l ) )  + M ( r  l + 1 ), r l + 1 )) - M ( r  l) ,  r  l ) )  

~> ~b(n, I +  1)-ok(n, l)+M~ l+ 1 ) -  ~bi(n, I)) 

f i/2 ] 

~>|a~o ( M ~  J (c~(n,l+ 1)-~b(n, I)) (4.22) 
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for 1 <<.i<~n-2, i even, provided ~b(n, l), ~b(n, l +  1)~91nc~ [n  ~ re|. This 
gives 

4(n, l +  1 ) - r  l )~;2z  (M~ a (4.23) 
"xa= 0 

for n even and, following analogous steps, 

3-~ ((n-1)/2(mO)a)-I (4.24) 

for n odd. 
Since, by the hypotheses, the right hand side goes to zero when n ~ oo 

uniformly in l, we have proven that, under the circumstances that provide 
(4.19), the set 91,, ~ [n  ~ r~] becomes dense on itself when n --* oo. To estab- 
lish that 91, c~ In  ~ n |  becomes indeed dense over the whole interval 
[n  ~ rt] we will also need the following result. 

T h e o r e m  4.11.  Let l~176 be given by r 1 7 6  
~b>x~ Then, the limit l imeade (n , /~176  | 

Proof. Let us consider the dynamical system (4.17) with r replaced 
by n~ x ~ + 2 = x ~  ~ x~). As in (4.22), we write 

r =(n, 1 ~ - K i +  z = r l ~ - K ~  M(r 1~ r l ~  M(tr ~ 

>/r l ~ -/r  + MO(r 1 o) _ Ki ) (4.25) 

The inequality in (4.25) follows from (4.21). 
Repeating the steps (4.22)-(4.24) we conclude the proof  of 

Theorem 4.11. Recall only that r l ~ >K ~ >~r l ~ - 1 )  implies r l ~ 
> xj >1 r 1 ~ - 1 ), giving ~b,(n, 1 ~ - ~c, ~< 2re. | 

We shall next establish that 91~ n [n ~ re| becomes indeed dense over 
the whole interval [n  ~ re| under the above assumptions when n ~ oo. After 
the above results, we only need to show that the sets ~ ,  c~ [~c ~ ~] contain 
other elements than n for the considered values of ( and for n large enough. 

Since we already know that, for ( =  1/3, 91, becomes dense on S ~ 
when n goes to infinite, we can argue that, for (-= (l  larger but close 
enough to 1/3, there is a fixed n o large enough such that 91no m [n ~ rc]\{zt} 

~2~. This is because the elements of 91no depend continuously on (. We 
have seen that 9t, ~ [~c ~ r~] becomes dense on itself for n ~ oo and by 
Theorem4.11, we conclude that for ( - ( t  the set 91 ,c~[x~  becomes 
dense on [n ~ re| when n --* oo. This sort of argument can, of course, be 
repeated for larger values of ( covering the whole interval 1/3 < ( < (1. 

822/88/1-2-18 
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It remains now only to prove that the basic assumption (4.19) indeed 
holds for suitable values of ~. For  this a careful analysis of our discrete 
dynamical system is necessary. 

Let us introduce the sets ~ := {x~ R: 2(() L'(x) > 1} and ~ := ~ \ ~ ,  
where 2(() was defined in (4.4). By (4.2) these definitions say that 
L'(x) L'(y) > 1 for any y e N provided x e ~ .  

Let us first show that the set ~ is non-empty if ( e  (1/3, 1 ]. A simple 
computation shows that N =  (y, 2 re -  y ) +  2feZ, where y =y ( ( )  is the solu- 
tion in [0, r~] of the equation cos(y) = g((), where 

g(():= 
1, if 0~<~< 1/3 

3ff 2 - 8~ + 3 (4.26) 
2ff ' if 1 / 3 < ~ < 1  

Notice that [g(()[ ~ 1, as one easily checks. This says that N is a non- 
empty set for 1/3 ~< ~ ~< 1. One checks easily too that g(~) is a continuous 
and strictly decreasing function for 1/3 ~< ( ~< 1. 

From (4.18) and (4.2) we conclude that, for x e ~ ,  one has 
Mx(~, x) > 1 for any ~b e [0, re]. 

What happens if x e N? We will next show that for x e ~ one has 
~b + L(x) e N, provided 1/3 < ~ < ~t, where ~ -~ 0.46409, and ~b is large 
enough. Therefore, under these circumstances we also have the bound 
Mx(~b, x) > 1. We express these results in the following theorem: 

T h e o r e m  4.12.  There exist a constant ~/, 1/3 < ~ <  1, (t ~- 0.46409, 
and a continuous strictly increasing function K(() on the interval [ 1/3, ( t]  
with K(1/3) = 0, K(r  zc, such that, for r ~ [ 1/3, ~1) and ~b ~ (K((), ~],  one 
has Mx(~b, x) > 1 for any x~  [0, 2ze]. ] 

This theorem says that we can adopt K~162 in our previous 
analysis. 

Proof of  Theorem 4.12. As we have already discussed, the case 
x E ~ is trivial, by the definitions. For  x ~ ~ we want to show that, under 
the hypotheses, one has ~b + L(x) e Y3, i.e., 

y < ((~ + L(x)) mod 2zc < 2zc - (4.27) 

We will split the proof  in two parts. The first for x ~  [0, y] and the second 
for x~  [2zc -  ?, 2re]. 
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Denote 

K(()  := 9'(() + L((,  9'(()) 

= 3 a r c c ~  3 -8 (+3(2)2 (  4 arctan ( "J3(3 - ( ) ( 3 ( -  1) ) ~ -  --~- (4.28) 

where L was defined in (4.2). After some computations, it can be shown 
directly from (4.28) that for ( ~  (1/3, 1 ], 

1 33//~-3 -- () > 
K'(()  = ~ X/ 3(- -  i 0 

Therefore, K is a continuous strictly increasing function of ( in the 
interval [1/3, 1] with K ( 1 / 3 ) = 0  and K ( 1 ) = 5 n / 3 > m  This proves the 
existence of a unique (l ~ ( 1/3, 1 ) with K((I) = n. A numerical computation 
indicates that (l -~ 0.46409. 

1. The case x e [0, 9']. 

Here we want to show that 

9' < (9 + L(x) < 2 n -  9' (4.29) 

Since L ~> 0, the first inequality is clear since, by the hypotheses, 
> K(() = 9'(() + L((, 9'(()) >~ 9'(() - L(x). 

For the second inequality in (4.29) we notice that for x e  [0, 9'] one 
has L(x)<.~.L((,9'(()) since L is an increasing function. Hence, the 
inequality 9' + ~b + L(x) < 2n holds if 9'(() + L((, 9'(()) < n, since ~b ~< n. But 
this inequality is always true for 1/3 ~< ( <  (t. This completes the proof of 
the Theorem 4.12 for x s  [0, 9']. 

2. The case x e [ 2n - 9', 2hi. 

For x s [ 2 n -  9', 2n] we write x = 2 n -  y, where y ~ [0, 9'] and notice 
that L ( x ) = 4 n - - L ( y ) .  We want to show that 

9' < t,b- L(y)  < 2n--  9' (4.30) 

The second inequality is trivial, because e k + 7 - L ( y ) < 2 n ,  since ~b and 9' 
lie in [0, n]  and L>~0. The inequality 9'+L(y)<~,b will hold if 

�9 ~b > 9'(() + L((, 9'(()) = K((), which is one of the conditions of Theorem 4.12 
and can always be satisfied provided 1/3 ~< ( < (l. This completes the proof  
of the Theorem 4.12. | 
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5. A N A L Y T I C I T Y  OF m A R O U N D  z = l  FOR 1 / 3 < i ; < 1  

We shall now determine the domain of analyticity of the magnetiza- 
tion m in the paramagnetic phase. We aim to show that, for 1/3 < ( < 1 and 
p e n ,  m can be analytically continued through the arc S 1 \A~, which, in 
view of Theorem 1.1, proves the analytic statement of Theorem 1.2. 

We begin by showing some preliminary results. 

T h e o r e m  5.1. Given 1/3 < ~ <  1, let ~=~b(~) and x = x ( ~ )  be given 
by (1.11). Then, for all ~b o < x, the fixed point equation 

~ = ~ o + L ( ~ )  (5.1) 

admits a unique stable solution ~* =~b*((, ~b0) to which the dynamical 
system (4.3) converges. Moreover, the solution ~* is a monotonically 
increasing function of the initial condition ~b 0 with 0 < ~b* < ~ ~< re. I 

R e m a r k  5.2. Theorem5.1 implies that the arc SI\A~ is free of 
Lee-Yang singularities since (4.1) can never be satisfied for any n e ~. 

Proof By Proposition 4.2, L is convex on the domain 0 ~< x < n with 
L'(0) < 1 if 1/3 <(~< 1. Therefore, there always exists K = x ( ( ) > 0  such 
that, for all ~0 ~< x the graph of ~b 0 + L(x) intercepts the graph of x at least 
once in this domain. The constant x is obtained by imposing ~ =  x + L(~) 
and the tangency condition 

1 _~2 ) 
L'(~)=2 1+2~cos~+~ 2 =1 (5.2) 

These equations determine uniquely tc and the fixed point solution ~ to 
(5.1) at ~b 0 =x ,  in accordance to Theorem 5.1. 

Next we will show that, the iterates of the discrete map (4.3) converges 
to the fixed point ~*. Let ~b* = ~b*((, ~bo) be the smallest solution to (5.1). 
It follows from Proposition 4.2 that ~b < ~b 0 + L(~b) < ~b* < ~ holds for all 
~b~<~b* and ~b0<x. In particular, using (5.1), ~bo=~b*-L(~b*)<~b*. So, 
(4.3) maps the interval [0, ~b*] into itself and it is contractive in this 
domain: 

IL(O)-L(~r)l ~< L'(~b*)I~b-al ~ q *  I~b- ~rl 

for all ~b, tr[0, ~*]. This implies convergence of the sequence {~bj}j~> o to 
the solution ~b* since q * < L ' ( ~ ) = l  and concludes the proof of 
Theorem 5.1. | 
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We are now in position to determine the domain of analyticity of the 
magnetization m according to Theorem 1.2. We begin by showing the 
following result. 

L e m m a  5.3. For 1 / 3 < ~ < 1  and p e n ,  the s e q u e n c e  {raN= 
FN+IN, N e  tN} converges to a continuous function r ~ = P + 7  o n  SI\A,c, 
where X = K(() is given by (1.11). | 

Proof. Let z = e i+~ with ~b0 e [0, n) and recall that ei+J= wj(z), j e  N, 
are such that ~bj satisfy the discrete map (4.3). By Theorem 5.1, we have 

- cos4 ) , J  2 
,r(wj)l=(~ +-~-~os~/j <~ ~ (5.3) 

for some & = &(~, ~bo) > 0 provided 1/3 < ~ ~< 1 and 0 ~ ~b0 < x. As a conse- 
quence, for any e > 0, 

M--I / ~  M--1 
[FM(z)--FN(Z)[ ~ E aj Ir(wj)l ~< ~ a j ~ e  

j ~ N  j = N  

for M>N, N large enough, since {an}nE ~ is summable. This says that the 
sequence of continuous functions FN converges uniformly to a continuous 
function P on S'\A~ with x =x(~)  for all 1/3 < ~ <  1. 

Analogously, under the same conditions, we have 

( w N -  wM wN) ! [Ia't(z)-IN(z)[~2 1 +wM)(1 + "~0 [wN-wacl~e 

for any e > 0 provided M and N are large enough, as a consequence of 
Theorem 5.1. Thus, the sequence of continuous functions IN, N e  N, con- 
verges uniformly to a continuous function 7 on SI\A,,. This concludes the 
proof of Lemma5.3. | 

By using the "Edge-of-the-Wedge" theorem, the analytic function m 
studied in Section 1.1 can be analytically continued through the arc S~\A~ 
provided rh is the limit of m when z approaches the arc S I\A~. We shall 
establish this in the following theorem. 

T h e o r e m  5.4. Let 1 /3<(~<1 and p~n .  Let m = m ( ~ , z , p )  be the 
analytic functions on z stated in Theorem 1.1 for the domain 
{[z[ < 1} w {[zl > 1}. I f z  0 ~S~\A~, we have 

lim [m(z)--rh(zo)[ = 0  ] 
z ~ z  0 
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Proof.. Let wj=wj(z )  be given by (23)  with z ~ C ,  and recall the 
sequence w j, j ~ ~, satisfies 

ws=zh(w s l )=Z(howj_ , )  (5.4) 

with Wo = Z. We set Wo, s := ws(zo), j ~ I~, with Zo ~ S~\AK and note that one 
can write Wo, j =  e i+s with the sequence ~b s, j ~  ~, satisfying (4.3). 

We have Iwo-Wo, ol = I z - z o l  and for j =  1, 2,..., 

Iwj+, - Wo, j+ l I = Izh(wi) - zoh(wo, j)l 

~< I z - z o l  + Izl I h ( % ) -  h(wo.s)l 

= [Z-Zol + IzQ(w s, Wo, s)l Iwj-wo, jl (5.5) 

where Q(w, w') = Q(1, w, w') is defined in (3.14). 
For  fixed e > 0 and 0 < q < 1 we let z ~ C be such that 

I z -  Zo I < ~(1 - q) (5.6) 

Note that, by Theorem 5.1 and Proposition 4.2, 

2(1 _~2) 
I Q(wo, i, Wo, j)l = 1 + 2~ cos ~bj + ~2 = L'(~bfl < 1 

holds for all j ~  since ~bj<~ (recall (5.2)). Now, using the fact that 
Q(w, w') is a continuous function of w and w', there always exist numbers 
0 < q < 1 and e > 0 such that, for z satisfying (5.6), we have 

sup ~', IzQ(w', w)l < q  (5.7) 
w~S]\A~: w': bw'--wl<~ 

We now claim that lim z ~ zo [wj - Wo, s [ = 0 holds for any j ~ ~. Clearly, 
I Wo - Wo, o I < e. By induction, let us assume that I w j -  Wo../I < e for some 

j ~  N. Then IzQ(wj, Wo, fll < q  and, from (5.5) and (5.6), we get 

I w j + , - W o ,  j + l l  ~ I z - z o l  + q  Iw j -Wo,  jl < ~  

uniformly in j ~ N. Since e is arbitrary, this establishes the claim. 
If IZ-Zol < (1 - q ) e 6 / 2  with O as in (5.3), we have 

2 Iwj-wo, sl 
< g  BY(z, Zo):= [r(wy)- r(wo, y)l =1(1 + wy)(1 + Wo, y)l 
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and consequently 

IroN(Z)--r~N(Z0)l ~ IFN-- FNI + IIu-- Tul 

<~ 
N - - !  

Z 
j = O  

ajDJ(z, Zo) + Pl "" " p N D N (  Z, Zo) < ~ 

holds uniformly in N. This concludes the proof  of Theorem 5.4 and the 
proof  of  the analytic statement of Theorem 1.1. I 

6. CONTINUITY AND DIFFERENTIABILITY OF m 

The aim of this section is to establish Theorem 1.6. The quenched 
magnetization at origin m will be here considered as a real valued function 
o f z : m :  ~ +  ~--~ R. 

Our  study on the smoothness of the quenched magnetization m will be 
divided in three subsections. In the first it will be examined under which 
conditions m is discontinuous at z = 1 and its value will be computed. The 
second subsection will establish smoothness of F under the assumption of 
Theorem 6.5 which will be proven in the last subsection. 

6.1. Jump of the Magnetization 

This subsection is devoted to show that, for z ~ ~+  and 0 ~< ( <  1/3, 
m = lim,, ~ ~ m N is a continuous function of z if p ~ 7~ 0 and discontinuous at 
z = l  i f p ~ z  L w i t h a > 0 .  

We start by noting the following facts about  the function r (the proof  
will be omitted): 

Proposition 6.1. r : x ~ +  ~-+r(x)~R given by (3.7) is a con- 
tinuous monotone  decreasing function of x with r (x )=  -r(1/x)<~ 1. I 

Proposi t ion6.1 and (3.11) imply m ( z ) = - m ( 1 / z )  and since 
N - - I  ~'~n = o a,, -Jr- p 1 "" " P N  = 1, we have -- 1 ~< m(x) ~< 1. In addition, m(1) = 0 as a 

consequence of wn( 1 ) = 1 for all n e ~. 
Let ( E [0, 1/3), z e E + and p ~ z~ 0. By Proposit ion 6.1 and recalling 

that  lim . . . .  p~ - . .p~ =0 ,  we have 

N - - 1  

]mN--rnm[ <~ ~, 
n = M + l  

a ,  [r(wn)[ + p ~  . . -pM [ 1 - p M + l  "''PN[ [r(WN)[ <e 

(6.1) 
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for any e > 0 provided N and M, M < N, are large enough. The sequence 
{raN}N> o is thus a uniform Cauchy sequence of continuous functions 
which establishes the continuity of m in z E •+. 

Note that this statement is also true for the sequence {FN}N>O if n0 
is replaced by ~r in the assumptions. So, in order m to be discontinuous at 
z = 1, IN must converge, as N-+ ~ ,  to different limits, I > and I <, depend- 
ing on whether z is larger or smaller than 1. This requires p ~ rc u with a > 0 
and ( ~ [ 0 ,  1/3). 

By definition wn(z), n E ~,  satisfy (5.4) with Wo=Z. The following 
proposition gives some properties of h which will be useful for this and the 
next subsection. Its proof  follows by an easy computation and will be 
omitted. 

Proposition 6.2. For ( ~ [ 0 ,  1/3),h: w ~ +  ~-- - ,h (w)~+ given by 
(2.1) is a continuous monotone increasing function of w, bounded from 
below and above by ~2 and 1/~ 2, respectively, with h (1 )=  1. Its first 
derivative 

h'(w) 
2 ( ( +  w)(1 _~2) 

(1 +(w)  3 

has a maximum value at ff = (1 - 3 ( 2 ) / 2 (  > 1 given by 

8 
h'(#)  

27((1 - (2) 

with h"(w)>O for 0~<w<v~ and h"(w)<O for w > ~ .  In addition, 
h'(1) =2(1 - ( ) / ( 1  + ~) is strictly larger than 1 for all 0 ~< ( <  1/3. ] 

We shall now describe in the next proposition the limit points of w,. 
By (3.11), we can restrict ourselves to z~  [0, 1). This implies, in view of 
Corollary 2.2, that w, ~ [0, 1) for all n~ N. 

Proposition 6.3. Let ( ~ [ 0 , 1 / 3 )  and z ~ [ 0 , 1 ) .  The sequence 
w,,  n ~ ~,  converges to the unique solution w = w((, z) of the fixed point 
equation w = zh(w) in [0, 1). In addition, w is a monotone increasing func- 
tion of z with 

1 - 2 ( - (  2 1 - ( 2 ( 1 - 3 ( ' / ' / 2  
w := !ira w - 2( 2 2( 2 \ 1 + ( J I (6.2) 

Proof.. The convergence statement of Proposition 6.3 follows from 
Theorem 3.4 and Corollary 2.2. The fixed point w -- w((, z) is monotone in 



Griffiths" Singularities in Diluted Ising Model 259 

z because h is a monotone increasing function. The fixed point equation 
w = h(w) at z -- 1 is equivalent to 

( w -  1 ) [ ( 2 w 2 - ( 1 - 2 ( - (  2 ) w + (  2] = 0  

which, when 0 <~ ( <  1/3 has three real solutions but only one in [0, 1). 

R e m a r k  6.4. Proposition6.3 can be extended to any z e ~ +  by 
using the relation w((, z) -- 1/w((, l/z) so, ~ := limz,~l w((, z) = 1/w. 

We now turn to the magnetization jump. As a corollary of the result 
established in (6.1) we have limz. 1 l imy~ ~ FN=O for all p e g .  Therefore, 
in view of Proposition 6.3, for p erc, with a > 0, we have 

lim lim raN=lira lim IN=ar(w) 
z . ~ l  N ~ c z ~  z ~ l  N ~  

Analogously, by Proposition 6.1 and (3.11), 

lim lira mu=ar(ff;)=--at(w_) 
z x ~ l  N ~  

from where (1.13) follows, since (recall (6.2)) 

(1 --()'/2(1 + (),/2 
r ( v )  - 

1 - (  

This proves the continuity and the magnetization jump statements of 
Theorem 1.6. | 

6.2. D I F F E R E N T I A B I L I T Y  OF F 

We have shown that F is a continuous function of z for all z e E + and 
p e n .  Here it will be established the differentiability statement of 
Theorem 1.6 under the same conditions. We recall that, in view of 
Theorem 1.2, we need only to consider ( e  [0, 1/3). 

We shall use very often the recursion relation (5.4) with the initial con- 
dition Wo = z. Hence, to show smoothness of F, we need to estimate the kth 
derivative, Dk(fog), of the composition of two functions f and g. If ~ 
denotes the set of all partitions P =  (P1,.--, P~) of {1, 2 ..... k} and [P[ 
denotes the cardinality of the set P, we have 

Dl,(fog)= ~ Die@ f(S)og (6.3) 
P ~ ' k  "= 
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Now, let us assume that f and g are smooth functions such that, for 
all n e N, 

1 tf( ,)(x) I ~< GK7 and 1 ,, n! ~.  [g(")(x)l ~< Cgtrg (6.4) 

hold for some finite constants Cy, try, Cg and trg. 
Then, since ~ j  Iejl = k for any partition P e Nk, (6.3) can be bounded by 

k~ " [Dk(f o g)l <~ [Pjl v. C_e_ g~'leJI st Cyx• 
" P  ~ k  . 

= cjtr nk(c.trz) (6.5) 

where 

1 ; ~  Ipjl! sV x s 
R (x) P . k 

(6.6) 

To continue the evaluation of (6.5) we need an estimate on R~. It will 
be convenient to write (6.6) in a more suitable form. If nj denotes the 
number of times a set P with IP I = j occurs in the partition P, Rk can be 
written as 

Rk(X)= ~ (Y~./nj)! XZj, j 
nl! . . .n~! 

(6.7) 

where the summation is over all k-component vectors n =  (n I ..... nk) ~ N k 
such that n~ + 2n2 + ...  + knk = k. 

The following theorem is our main technical result of this section. 

T h e o r e m  6.5. Given k e  N +, let Rk: R+ ~ R+ be the polynomial 
defined by (6.7). Then, 

Rk(x)<~x(1 +x)  ~-I  | (6.8) 

Theorem 6.5 will be proven in the next subsection. 
Applying Theorem 6.5 to the inequality (6.5), gives an upper bound of 

the form (6.4): 

1 
k~. IDk(f ~ g)[ ~< Cs"g tr~"g (6.9) 
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where 

CgKf 
Cf og= Cf l _l_ CgKf 

261 

We thus have 

where 

Ck 

in (5.4) 
lemma controls derivative of arbitrary order of h. 

l e m m a  6.6. Let ~ [ 0 ,  1/3) and w ~ +  such that 

1--~2 1 (6.11) w~<l ~2~_~2[1+( 1 _2~2)1/2j 

Then, the following holds 

1 
k~lh(k)(w)l ~<(h'(w))k I (6.12) 

for all k E N +. 

Proof.. For k e N + ,  we write h = a . b  where a = : ( ~ + w )  2 and 
b =: (1 + ~w) -2 and use the Leibniz formula: 

h {k) = ~ a~k)b (k-p) 
p=0 

where derivatives of b can be explicitly evaluated: 

U 
b(J)(w) = ( - - 1 ) J ( j +  1)! j = 0 ,  1, ..- 

(1 +~w) 2+j 

h (k) = ( - 1 )k k! Ck 

1 - ~2 
(2(1 + ~w) 2 [ ( k -  1)(1 - (2) _ 2~(~ + w ) ]  

provided f is replaced by h and g replaced by w.  1. The next 

(6.13) 

and K fog=Xg(1 + CgKS) (6.10) 

The estimate (6.9) can be used to control inductively derivatives of w, 
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By induction, equation (6.12) is implied if 

1 1 
k~ Ih(k)(w)l ~< (k-1)------~. [hr ~)(w)l. h'(w) 

holds for k ~> 2. In view of (6.13), this follows provided 

((1 + ( w )  2 I ( k -  1)(1 _ ( 2 )  - 2 ( ( ( +  w)] 

~<2(1 - (2 ) ( (+  w)f(k-- 2)(1 - (2) - 2 ( ( ( +  w)l (6.14) 

There are three cases to be considered: 

Case I ( k - 1 ) ( 1 - ( 2 ) > ( k - 2 ) ( l - ( 2 ) > 2 ( ( ( + w ) ,  
Case II ( k -  1)(1 - ( 2 ) > 2 ( ( ( + w ) ~ > ( k - 2 ) ( 1  _ ( 2 )  and 

Case  III 2 ( ( (  + w) />  ( k -  1)(1 - (2) > (k - 2)(1 - ( 2 ) .  

We can verify that (6.14) is true in all cases provided the following 
condition holds: 

((1 + (w)  2 ~< 2(1 - ( 2 ) ( ( +  w) (6.15) 

For case I and II, simply replace ( k -  1 ) by ( k -  2) in the left-hand side of 
(6.14). For case III, note that (6.14) is equivalent to 

[((1 + ( w ) 2 -  2(1 - ( 2 ) ( ( + w ) ] [ 2 ( ( ( + w ) - ( k -  1)(1 _ ( 2 ) ]  

2( 1 - (z)(( + w) 

which is always verified since, under the conditions of case III and (6.15), 
the left-hand side cannot be positive. 

Solving (6.15) for w gives the upper bound (6.11). This concludes the 
proof of Lemma 6.6. | 

We are now ready to prove the following 

Theorem 6.7. Given 0~<(<1 /3 ,  let z ~ R +  be such that w =  
w((, z), the solution to the equation w=zh(w), satisfies (6.11). Then, for 
n, k e  N with k~> 1, there exist finite constants C =  C((, z) and / t  =/~((, z), 
such that 

__ ~C'/z k if z # 1 
1 ID~w n I 

k! ~C/t nk if z = 1 

holds with C((, z) < 1 if z #  1 and/z((,  1) = 2 ( ( )  given by (4.4). 

(6.16) 

! 
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Proof  Theorem 6.7 will be proven by induction. Let us denote 

1 
W~ : = ~  [Dkwn[ k~  N (6.17) 

(W  ~ - w ~ )  where D denotes the differential operator d/dz, and suppose 

W~< Wn/z~ (6.18) 

holds with positive constants W. and p . ,  Pn >/1. Since Wo = z, we have 

W~<{10 if j - 1  (6.19) 
otherwise 

which certainly satisfies (6.18) with Wo = 2 and Po = 1 (these are chosen so 
for late convenience). Differentiating (5.4) k-times and taking absolute 
value, gives 

1 
1 1 tDk(how,) l - t  - -  IDk - ' (how , ) l  k~ IDkw'~+ l [ <~ z ~.. ( k -  1)! 

Applying Eqs. (6.9) and (6.10) with f replaced by h and g replaced 
by w,, and using Lemma 6.6, yields 

( 1 )  ~]nWn 
W~+ ~< z +  [ p . ( l + q n W n ) ]  k 

1 1 "Jt-~]nW n 

where ~/n := h'(w,). Here, the positivity of IV,, and p ,  >~ 1 have been taking 
into account. This gives, in view of (6.18), the following recursive relations 

( 1 )  X. and p ~ + , = p . ( l + X ~ )  (6.20) X~+I=~/.  z +  I + X ~  

where X. := r/n W.. 
We now distinguish two possible scenarios: either X. tends to zero as 

n ~ ~ or remains bounded from above and below by finite positive con- 
stants. We shall see that X. ~ 0 exponentially fast if 0 ~< ( < 1/3 and z ~ 1 
and this leads ]-/n "--)" /U < O0 whereas, if 0 ~< ( < 1/3 and z = 1, X, converges 
to a finite positive constant and p~ ~ oo exponentially fast. To show this 
we need the following result. 

I . e m m a  6.8. Let ( ~ [ 0 ,  1 / 3 ) , z ~ +  as in the Theorem6.7 and let 
~ / ,=q, ( ( ,  z ) :=h ' (w , ) .  Then, the sequence q, ,  n~  N, converges to ~/ as 
n ~ oo with 0 ~< ~/z < 1 if z # 1. If z = 1, q,  = 2(() = 2(1 - ()/(1 + () > 1 for 
all n~ N. | 
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Proof F r o m  Propos i t ion  6.3 and  the cont inui ty  of  h', ~/,, converges  to 
a limit t / =  h'(w) where w = w((, z) is the solut ion of  the fixed poin t  equa-  
t ion w=zh(w),  prov ided  ( e  [0, 1/3) and  z e  [0, 1). F r o m  R e m a r k  6.4 this 
can also be extended to z s (1, oo). Differentiat ing w = zh(w) with respect  
to z, we obta in  

h , (w) z=  l_ (Ow'~  ' \ Oz ] h(w) (6.21) 

where Ow/Ox, in view of  Propos i t ion  6.3, is strictly posit ive establishing tha t  
~/z < 1. No te  that  w, = 1 for all n ~ N provided  z = 1 (recall Coro l la ry  2.2) 
and  this implies q~ = 2(~) concluding the p r o o f  of  the lemma.  I 

We shall p rove  that  X,  --* 0 and/~n --* # < oo by  contradict ion.  We let 
e [0, 1/3) and z ~ ~ +, z ~ 1, and assume tha t /~ ,  diverges as n ---, oo. Then,  

in view of  L e m m a  6.8 and  our  hypothesis ,  there exists a finite n u m b e r  
no = no(l, z), such tha t  

(l)  
~/, z +  < 1  

for all n > no. This leads, by (6.20), the sequence {X,}  ~ ~ N to converge to 
zero exponent ia l ly  fast and  the sequence {/~,},~ ~ to converge to /~  < 0% 
contradic t ing our  assumpt ion .  

We now let ~ [0, 1/3) and  z = 1. Then,  by  L e m m a  6.8 

and  this implies, by induction,  tha t  1 + X~ > e .  > 1 for all n e N, and conse- 
quent ly 

j = 0  j = 0  

leads p,, --* oo. For  the induction,  note  tha t  1 + Xo = 1 + qo Wo = 1 + 22 
> ~o. Assuming tha t  1 + Xn > ~, is true, we have, in view of  (6.20), 

l + X n +  1 1+~ , ,  0% = - -  ~ O ( . n ~ O ~ n +  1 
I + X .  

since the sequence/~n, n ~ N, is m o n o t o n e  increasing. 
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Since the p,  tends to infinity exponentially fast so do 0~ tend to 2. As 
a consequence, there exist a constant C1 such that 

p . + ~ =  f i  (1 + X,.) ~< c12 "+l 
j = 0  

This concludes the proof of Theorem 6.7. | 

We shall now finish the proof of Theorem 1.6. 

Proof of Theorem 1.6 (Conclusion). Let us fix z = 1. Differentiating 
(3.8) k-times, gives 

1 N ,  1 
k--~.OkFN =- Z a. Dk[row~] (6.22) 

n = l  

which can be estimated by using (6.9), Theorem 6.7 and 

1 2 
j~. [r~J(wn)l ~ 5  (6.23) 

Here, (6.23) is obtained from the explicit formula r~J)(x)=(-1)Jj! 
2( 1 + x) j, j ~ N, and from Corollary 2.2. 

Now, (6.9) with f replaced by r and g replaced by w,, implies 

1 iOk[row,]l <~4C 1 + ILl nk (6.24) 
k! 

with C and p as in Theorem 6.7. 
In view of (6.22) and (6.24), there exist finite constants, C~ and C2, 

such that 

N 

1 ID~F N_DkFMI<~C,C~2 ~ a.p k'~<e 
kt n = M + l  

for any e > 0, provided {anp k'} n>~o is a summable sequence and M, N >  No 
for some No=No(~,p,k)<oo large enough. The sequence {DKFN}N~O, 
for any k e ~, is a uniform Cauchy sequence of continuous function of z 
in E+. This concludes the proof of Theorem 1.6. | 
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6.3. Polynomial Domination of R k 

Proof of  Theorem 1.6. Let us first assume that  the following upper  
bound 

k- -1  

Rk(x)<~x ~ Rj(x) (6.25) 
j=0 

holds for all x e R+ and k >~ 1, with Ro(x) - 1. The inequality (6.25) will be 
established afterward. 

We prove (6.8) by induction. For  k =  1, Rl(x)<~x by (6.25). Now, 
assume (6.8) valid for k = 1,..., n, n e N +. From (6.25), we have 

R.+l(x)<.x( l+x ~ ( l + x )  J 1 ) = x ( 1 - b x )  n | (6.26) 
j = l  

Proof of  (6.25). Define 

f 

y, nj, 1,...,/c 
j = l  

and notice that the coefficients of  Rk can be written as 

(~.jnj), Yl' Y2' Yk' =(Y2~...fYk~ 
nlt...nk! nl!n2!yl! nk!yk x! \ ] \ i n 2  n~ 

With this notation, (6.7) can thus be written as 

(Y21x'2...~(Yk~x'k6g(n,+ ... +knk) (6.27) R (x)=yx n , y , ,  J , J " 2  
n I n 2 n k 

where 6k(m)=  1 if m = k and 0 otherwise. 
For  1 ~<i<j<~k,  let R~"Jl(x) be the polynomial  of order k in x 

obtained from (6.27) by setting nl,..., ni 1, nj+t,---, nk all equal to 0: 

R[i,j] Z x n i  ( y i q - : )  ( y j )  k (x) = Z x"'+'...~, x'Jf~(ini+ ... + jnfl 
k, tl i + nj ni ni+ I nj 

Now, note that n~ = 0, 1 are the only values which satisfy the equation 
n l + 2 n 2 +  ... +knk=k. In the case n ~ = l ,  we have nl . . . . .  n ~ _ j = 0  
and Yk = 1. Equation (6.27) can thus be written as 

R k ( X ) = R  [l 'k  1] (X)-[ -x=R[k2 'k -2](X)J t -XRk_I(X)- -~X (6.28) 
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Here, R [l'k 1](X) has been written as 

R[k l'k 1](x)=R[tc 2,k-2](X)-[- Z x n ' " "  Z ( y k - l x )  
nl vaO nk 1 \nk  1"1 

x x  "k-' ~k(nl + "'" + ( k - -  1) nk_l)  

and, by making the change of variables n'~ = n i - 1, the second term can be 
written as xR k 1. For  the first term, we note that 2n2 + --. + ( k -  1) n~ 
= k holds only with nk_ 1 = 0. This implies (6.28). 

This procedure can be repeated for the sum over n2 in Rtk2'~-'-l(x). 
For  the term with n2 >~ 1, we change variable to n~ = n2 - 1 

X 2 X  n2 1 ' ' ' 2 (  yk 2~Xnk-2 
n2>~l nk I \nk=2"/ 

X ~ k _ 2 ( 2 n 2 _ 2 +  ... + ( k _  2) n~_2)=xR~2, k2 21 

and notice that  Rt2,~-23 ~-k-2 ~< R~ 2 by the positivity of  x. 
Relation (6.28) therefore says 

Rk(X ) ~R[k3"k--3](X) nC X(Rk 2-[-Rk_l(X) n t- 1) 

where we have used that 3n3+ .. .  + ( k - 2 ) n k  2 = k  holds only with 
nk_ 2 =0 .  

Continuing this process, we get 

Rk(X ) <~x(R[k/2](X) q- . . .  -t- R k l ( x )  q- 1) 

where [v]  is the integer part  of r e  N. Since Rj(x) >~0 for x e  N+,  this con- 
cludes the proof  of (6.25). 
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